\(\int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx\) [1706]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 112 \[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\frac {2 (a+b x) \sqrt {d+e x}}{b \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {2 \sqrt {b d-a e} (a+b x) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{b^{3/2} \sqrt {a^2+2 a b x+b^2 x^2}} \]

[Out]

-2*(b*x+a)*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2))*(-a*e+b*d)^(1/2)/b^(3/2)/((b*x+a)^2)^(1/2)+2*(b*x+a
)*(e*x+d)^(1/2)/b/((b*x+a)^2)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {660, 52, 65, 214} \[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\frac {2 (a+b x) \sqrt {d+e x}}{b \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {2 (a+b x) \sqrt {b d-a e} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{b^{3/2} \sqrt {a^2+2 a b x+b^2 x^2}} \]

[In]

Int[Sqrt[d + e*x]/Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

(2*(a + b*x)*Sqrt[d + e*x])/(b*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (2*Sqrt[b*d - a*e]*(a + b*x)*ArcTanh[(Sqrt[b]*
Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(b^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (a b+b^2 x\right ) \int \frac {\sqrt {d+e x}}{a b+b^2 x} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}} \\ & = \frac {2 (a+b x) \sqrt {d+e x}}{b \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (\left (b^2 d-a b e\right ) \left (a b+b^2 x\right )\right ) \int \frac {1}{\left (a b+b^2 x\right ) \sqrt {d+e x}} \, dx}{b^2 \sqrt {a^2+2 a b x+b^2 x^2}} \\ & = \frac {2 (a+b x) \sqrt {d+e x}}{b \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (2 \left (b^2 d-a b e\right ) \left (a b+b^2 x\right )\right ) \text {Subst}\left (\int \frac {1}{a b-\frac {b^2 d}{e}+\frac {b^2 x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{b^2 e \sqrt {a^2+2 a b x+b^2 x^2}} \\ & = \frac {2 (a+b x) \sqrt {d+e x}}{b \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {2 \sqrt {b d-a e} (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{b^{3/2} \sqrt {a^2+2 a b x+b^2 x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.72 \[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\frac {2 (a+b x) \left (\sqrt {b} \sqrt {d+e x}-\sqrt {-b d+a e} \arctan \left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {-b d+a e}}\right )\right )}{b^{3/2} \sqrt {(a+b x)^2}} \]

[In]

Integrate[Sqrt[d + e*x]/Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

(2*(a + b*x)*(Sqrt[b]*Sqrt[d + e*x] - Sqrt[-(b*d) + a*e]*ArcTan[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[-(b*d) + a*e]]))/
(b^(3/2)*Sqrt[(a + b*x)^2])

Maple [A] (verified)

Time = 2.16 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.83

method result size
risch \(\frac {2 \sqrt {e x +d}\, \sqrt {\left (b x +a \right )^{2}}}{b \left (b x +a \right )}-\frac {2 \left (a e -b d \right ) \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -b d \right ) b}}\right ) \sqrt {\left (b x +a \right )^{2}}}{b \sqrt {\left (a e -b d \right ) b}\, \left (b x +a \right )}\) \(93\)
default \(\frac {2 \left (b x +a \right ) \left (-\arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -b d \right ) b}}\right ) a e +\arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -b d \right ) b}}\right ) b d +\sqrt {e x +d}\, \sqrt {\left (a e -b d \right ) b}\right )}{\sqrt {\left (b x +a \right )^{2}}\, b \sqrt {\left (a e -b d \right ) b}}\) \(104\)

[In]

int((e*x+d)^(1/2)/((b*x+a)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/b*(e*x+d)^(1/2)*((b*x+a)^2)^(1/2)/(b*x+a)-2*(a*e-b*d)/b/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d
)*b)^(1/2))*((b*x+a)^2)^(1/2)/(b*x+a)

Fricas [A] (verification not implemented)

none

Time = 0.64 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.28 \[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\left [\frac {\sqrt {\frac {b d - a e}{b}} \log \left (\frac {b e x + 2 \, b d - a e - 2 \, \sqrt {e x + d} b \sqrt {\frac {b d - a e}{b}}}{b x + a}\right ) + 2 \, \sqrt {e x + d}}{b}, -\frac {2 \, {\left (\sqrt {-\frac {b d - a e}{b}} \arctan \left (-\frac {\sqrt {e x + d} b \sqrt {-\frac {b d - a e}{b}}}{b d - a e}\right ) - \sqrt {e x + d}\right )}}{b}\right ] \]

[In]

integrate((e*x+d)^(1/2)/((b*x+a)^2)^(1/2),x, algorithm="fricas")

[Out]

[(sqrt((b*d - a*e)/b)*log((b*e*x + 2*b*d - a*e - 2*sqrt(e*x + d)*b*sqrt((b*d - a*e)/b))/(b*x + a)) + 2*sqrt(e*
x + d))/b, -2*(sqrt(-(b*d - a*e)/b)*arctan(-sqrt(e*x + d)*b*sqrt(-(b*d - a*e)/b)/(b*d - a*e)) - sqrt(e*x + d))
/b]

Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\int \frac {\sqrt {d + e x}}{\sqrt {\left (a + b x\right )^{2}}}\, dx \]

[In]

integrate((e*x+d)**(1/2)/((b*x+a)**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/sqrt((a + b*x)**2), x)

Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\int { \frac {\sqrt {e x + d}}{\sqrt {{\left (b x + a\right )}^{2}}} \,d x } \]

[In]

integrate((e*x+d)^(1/2)/((b*x+a)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/sqrt((b*x + a)^2), x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.71 \[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\frac {2 \, {\left (b d \mathrm {sgn}\left (b x + a\right ) - a e \mathrm {sgn}\left (b x + a\right )\right )} \arctan \left (\frac {\sqrt {e x + d} b}{\sqrt {-b^{2} d + a b e}}\right )}{\sqrt {-b^{2} d + a b e} b} + \frac {2 \, \sqrt {e x + d} \mathrm {sgn}\left (b x + a\right )}{b} \]

[In]

integrate((e*x+d)^(1/2)/((b*x+a)^2)^(1/2),x, algorithm="giac")

[Out]

2*(b*d*sgn(b*x + a) - a*e*sgn(b*x + a))*arctan(sqrt(e*x + d)*b/sqrt(-b^2*d + a*b*e))/(sqrt(-b^2*d + a*b*e)*b)
+ 2*sqrt(e*x + d)*sgn(b*x + a)/b

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{\sqrt {a^2+2 a b x+b^2 x^2}} \, dx=\int \frac {\sqrt {d+e\,x}}{\sqrt {{\left (a+b\,x\right )}^2}} \,d x \]

[In]

int((d + e*x)^(1/2)/((a + b*x)^2)^(1/2),x)

[Out]

int((d + e*x)^(1/2)/((a + b*x)^2)^(1/2), x)